Learning Time in Static Classifiers

1 Griffith University, 2 Data61/CSIRO, 3 University of New South Wales, 4 Australian National University
AAAI 2026

Aliquam vitae elit ullamcorper tellus egestas pellentesque. Ut lacus tellus, maximus vel lectus at, placerat pretium mi. Maecenas dignissim tincidunt vestibulum. Sed consequat hendrerit nisl ut maximus.

Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ullamcorper tellus sed ante aliquam tempus. Etiam porttitor urna feugiat nibh elementum, et tempor dolor mattis. Donec accumsan enim augue, a vulputate nisi sodales sit amet. Proin bibendum ex eget mauris cursus euismod nec et nibh. Maecenas ac gravida ante, nec cursus dui. Vivamus purus nibh, placerat ac purus eget, sagittis vestibulum metus. Sed vestibulum bibendum lectus gravida commodo. Pellentesque auctor leo vitae sagittis suscipit.

Video Presentation

Another Carousel

Poster

BibTeX

@inproceedings{ding2026learning,
  title={Learning Time in Static Classifiers},
  author={Ding, Xi and Wang, Lei and Koniusz, Piotr and Gao, Yongsheng},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2026}
}

Acknowledgement

Xi Ding, a visiting scholar at the ARC Research Hub for Driving Farming Productivity and Disease Prevention, Griffith University, conducted this work under the supervision of Lei Wang.

We sincerely thank the anonymous reviewers for their invaluable insights and constructive feedback, which have greatly contributed to improving our work.

This work was supported by the Australian Research Council (ARC) under Industrial Transformation Research Hub Grant IH180100002.

This work was also supported by computational resources provided by the Australian Government through the National Computational Infrastructure (NCI) under both the ANU Merit Allocation Scheme and the CSIRO Allocation Scheme.