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Graph Your Own Prompt

Xi Ding, Lei Wang, Piotr Koniusz, Yongsheng Gao

L Deep networks learn rich features, but these
features often do not match semantic class
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structure.

£ Samples predicted as the same class may still
appear far apart in feature space, hurting

generalization.
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We use cosine similarity with non-negative values:

Confused in abstract space
Four legs? Hmm... A car? Or a horse?
/mmN
F T
Why not use your own predictions to
refine and clean feature structure?

F‘.J('.’) = ReLU(cos(xE’),xj(’))), Ei=1,.. .0 ly
From the prediction logits Z = [z, ,...,z}]" of the same batch:
® apply softmax to obtain class probability vectors p; = softmax(z;),
® compute pairwise cosine similarity between prediction vectors:
5{,‘ = ReLU(cos(p,-,pj)). (2)
To focus on reliable semantic relations, we build a binary mask
Me {0,1}™":
13 if ¥i= ¥js
Mij = . (3)
0, otherwise.
The masked prediction graph P € R"*" is then
where © denotes elementwise multiplication.
The layer-wise graph consistency loss is
/ : . 2
ﬁéng Htrlu(F(’))—trlu(P)HF. (5)
For a set of layers {1,..., K}, compute a graph consistency loss at
each layer and combine them:
ad 2
Locr = Y wy [[triu(F) —triu(P) || 7, (6)
/=1

Ziotal = ZcE + A ZGer

Contributions

GCR: A new framework that aligns feature
relational graphs with a class-aware masked
prediction graph to enforce semantic
consistency.

GCLs: Parameter-free layers that inject multi-
layer relational supervision.

Cross-space alignment: Dynamically weights
layers to refine semantic structure.
Model-agnostic improvements: Consistent
boosts in semantic coherence and
generalization across diverse architectures.
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Insert parameter-free GCLs after any block or layer.
Each GCL builds a feature relational graph from batch features .
Softmax outputs form a masked prediction graph, keeping only
semantically consistent pairs.
GCLs align feature graphs to prediction graphs.
Alignment signals are weighted and added to CE loss.
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“ (a) DenseNet-121

(b) With our GCLs

(c) MobileNet

(d) With our GCLs

- The relational graphs show that adding GCLs yields cleaner, tighter class
| clusters with fewer cross-class links, reducing feature noise and aligning
" features with semantic predictions
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