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Abstract

This paper presents the Image Embedding Explorer,
an interactive tool designed to open the “black box”
of deep learning models by visualizing and analyz-
ing image embeddings across network layers. Fo-
cusing on CLIP and DINOv2 models, we exam-
ine how features evolve from layer to layer by
projecting high-dimensional embeddings into lower-
dimensional spaces using projection pursuit tech-
niques such as PCA, t-SNE, UMAP, and Grand
Tour. Our evaluation applies KNN accuracy on
the labeled CIFAR-10 dataset and Silhouette Scores
on the CIFAR-10 and CelebA datasets, revealing
different performances of the CLIP and DINOv2.
Through deeper analysis, we can understand the
model’s focus areas and weaknesses when extract-
ing embeddings. Our findings also demonstrate
the potential of non-linear and self-supervised ap-
proaches in capturing nuanced image features, ad-
vancing interpretability in deep learning. Through
the Image Embedding Explorer, users gain an intu-
itive way to visualize and understand complex model
embeddings, which enhances transparency in model
decision-making.

1 Introduction

1.1 Background and Motivation

Deep learning has revolutionized the field of ma-
chine learning, achieving remarkable performance
in computer vision tasks. Models like Contrastive
Language–Image Pre-training [11] (CLIP) and Self-
Distillation with No Labels [12] (DINOv2) have
been demonstrated as powerful tools for learning
rich visual representations from images. However,
despite their success, deep learning models are often
criticized for being ”black boxes” due to their com-
plex architectures and high-dimensional parameter
spaces. Understanding the internal workings of
these models remains a significant challenge, lim-
iting trust, transparency, and further advancement
in the field.

The interpretability of deep learning models is very
important for improving model performance, un-
derstanding model decision-making processes, and
evaluating effectiveness across different datasets.
The details are as follows:

• Model Improvement and Decision Under-
standing: Interpreting models aids in identify-
ing and enhancing them by revealing what fea-
tures they focus on and how they make decisions.
By examining the embeddings produced at dif-
ferent layers within a deep learning model, re-
searchers can gain insights into the hierarchical
structure of learned features. Layer-wise analy-
sis reveals the incremental learning stages that
ultimately contribute to the model’s final pre-
dictions, offering a glimpse into the ”black box”
nature of deep models.

• Performance Evaluation Across Datasets:
Interpretability enhances the ability to assess
model performance across different datasets. An-
alyzing which parts of a dataset a model classi-
fies well and where it struggles can clarify the
strengths and weaknesses of the model. This
understanding allows for targeted adjustments,
such as data augmentation or architecture mod-
ifications, to address the model’s weak points.

To improve the interpretability of models, it is nec-
essary to explore techniques that allow us to visual-
ize and analyze the internal representations and de-
cisions made by deep learning architectures. To this
end, we developed the Image Embedding Ex-
plorer, an interactive tool designed to help users
gain insight into models through visualized em-
beddings. This tool provides a user-friendly in-
terface for exploring embeddings across different
model layers, allowing users to observe how fea-
ture abstraction evolves progressively. Addition-
ally, the Explorer enables users to examine the re-
lationships between images and their correspond-
ing embeddings, uncover clustering patterns, and
identify the features that the model leverages to
distinguish between classes.

1.2 Contributions

The contributions of this paper can be summarized
as follows:
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1. Layer-Wise Embedding Visualization: Our
tool supports embeddings from any layer of mod-
els like CLIP and DINO, enabling detailed anal-
ysis of hierarchical feature representations and
their evolution within the network.

2. Multiple Projection Pursuit options: We
offer techniques such as PCA [9], UMAP [10], t-
SNE [15], and Grand Tour [1], allowing users to
choose the most suitable approach for different
data structures and analysis goals.

3. Interactive 3D Exploration: An interactive
interface lets users navigate embeddings in 3D,
with options to rotate, zoom, and examine indi-
vidual data points, linking embeddings directly
to the visual data.

4. Improved Model Interpretability: Our tool
provides insights into model workings by reveal-
ing patterns and clusters in embeddings, sup-
porting tasks like model evaluation and debug-
ging.

2 Related Work

Image Embeddings Extraction. Advancements
in deep learning have significantly enhanced mod-
els’ ability to generate information-rich image em-
beddings. Early models, such as AlexNet [7] and
VGG [14], laid the foundation by capturing visual
features through convolutional layers, though they
were limited in their versatility and required exten-
sive labeled data.

In recent years, general-purpose models like CLIP
[11] and DINOv2 [12] have gained popularity for
their robust and flexible feature extraction capa-
bilities. CLIP employs a contrastive learning ap-
proach with dual encoders for images and text,
enabling it to perform tasks like zero-shot classi-
fication and cross-modal matching through joint
representations. DINOv2, a self-supervised model
utilizing a teacher-student architecture, is particu-
larly effective for transfer learning in settings with
minimal annotated data. Both models provide
information-rich embeddings at multiple layers, al-
lowing more detailed analysis on feature evolution
across the model’s hierarchy and gain deeper in-
sights into the learning process.

Visualization. Image embeddings are challeng-
ing to interpret due to their high dimensionality.
Over the years, various visualization methods have
emerged to address the challenges of representing
high-dimensional data in an interpretable manner.
Among the foundational techniques is Principal
Component Analysis (PCA) [9], a linear projection
method that identifies principal components to cap-
ture maximum variance in data. PCA is effective
for an initial overview but often lacks the flexibil-
ity to reveal intricate patterns in complex datasets,

leading to the need for more advanced methods.

Recently popular non-linear methods like t-SNE
[15] and UMAP [10] often produce visualizations
that are good at preserving neighborhood relation-
ships and capturing cluster structures. These meth-
ods use optimization techniques to enhance cluster
separation in low-dimensional space according to
a specified metric, resulting in visualizations with
clearer and more distinct groupings. They are espe-
cially useful for demonstrating a model’s ability to
distinguish between classes and for identifying po-
tentially confusable groups, which can help uncover
weaknesses in the model. However, the static na-
ture resulting from their optimization process limits
their potential for interactive exploration.

Conversely, dynamic methods like the Grand Tour
[1] and Manual Tour [3], part of the ‘tours’ family,
enable continuous data exploration through rotat-
ing projections, uncovering underlying structures
from multiple perspectives. By distributing infor-
mation across various dimensions over time rather
than collapsing it into a single static projection,
these methods offer a more direct and unfiltered
representation of complex patterns. Among dy-
namic projection methods, the Grand Tour is fre-
quently implemented for its simplicity and flexibil-
ity, making it easily adaptable to other tour meth-
ods. However, our experiments indicate that, de-
spite modifications, dynamic tours generally do not
outperform PCA in terms of cluster clarity due to
their lack of optimization. In our Image Embed-
dings Explorer, we integrate four different visual-
ization methods into one tool, providing users with
a versatile, hybrid approach for comprehensive data
exploration.

Metrics. We evaluate our tool using two metrics:
the accuracy of KNN classifiers on labeled datasets
and a custom metric, the Silhouette Score of clus-
ters obtained by K-Means on unlabeled datasets.
For the KNN classifier accuracy, commonly used
in related works on dimensionality reduction for
labeled datasets [10] , we first apply a k-Nearest
Neighbors (KNN) algorithm to classify each data
point in lower-dimensional space. The accuracy is
then calculated by comparing the predicted label of
each data point (based on the majority label of its
nearest neighbors) to its true label, as follows:

KNN Accuracy =
Correctly predicted data points

Total data points

Additionally, by using the same set of high-
dimensional data to compute KNN accuracy as a
benchmark, we can evaluate how effectively differ-
ent visualization methods preserve the structural
integrity of high-dimensional embeddings in their
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low-dimensional representations.

Previous studies have not evaluated dimensionality
reduction methods on unlabeled datasets. In our
approach, we adapt the Silhouette Score [13], an
well-known metrics, for use with unlabeled datasets
by first applying K-Means clustering to the data,
followed by calculating the Silhouette Score. This
adapted approach assesses clustering quality by
measuring how well each data point aligns with its
assigned cluster relative to other clusters:

s(i) =
b(i)− a(i)

max(a(i), b(i))

where a(i) is the average distance between point i
and other points in the same cluster, and b(i) is the
average distance between point i and points in the
nearest neighboring cluster.

3 Methodology

3.1 Preliminary

This section provides an overview of the embed-
dings and projection pursuit methods we use.

3.1.1 Image Embeddings

In deep learning, an image embedding is a vector
representation, z ∈ Rd, where d is the embedding
dimensionality that captures high-level features of
an image. For an input image I, a model fθ pa-
rameterized by θ (weights and biases of the model)
transforms I through multiple layers, yielding an
embedding:

z = fθ(I) ∈ Rd.

Models like CLIP and DINO are designed to opti-
mize the embeddings such that semantically simi-
lar images lie closer in this high-dimensional space,
forming clusters of similar representations. The
embeddings are typically extracted from specific
model layers, allowing researchers to analyze fea-
ture evolution through the network’s hierarchy.
The resulting embeddings, however, are often high-
dimensional (d ≫ 3), making direct visualization
infeasible without further dimensionality reduction.

3.1.2 Projection pursuit and visualization

Mapping high-dimensional embeddings into 3D-
dimensional spaces requires projection pursuit tech-
niques that preserve essential structures, such as
clusters or relationships, within the data. Let
Z = {z1, z2, . . . , zn} ⊂ Rd be a set of n embeddings
obtained from a dataset. Dimensionality reduction
can be formulated as finding a function g : Rd → Rk

(where k ≪ d) that maps each high-dimensional
embedding zi to a lower-dimensional representation

yi = g(zi) ∈ Rk, ideally preserving the neighbor-
hood relationships in the high-dimensional space.

Several common methods exist for g, each with dif-
ferent mathematical properties:

Principal Component Analysis (PCA): PCA
is a linear transformation that projects the data
onto a k-dimensional subspace by maximizing vari-
ance. The projection matrix W ∈ Rd×k is deter-
mined by the top k eigenvectors of the covariance
matrix Σ = 1

n

∑n
i=1(zi − z̄)(zi − z̄)T . The embed-

dings are then reduced as follows:

Y = Z ·W,

where Y ∈ Rn×k represents the reduced embed-
dings. While efficient, PCA may fail to capture
non-linear structures present in complex data like
images.

t-SNE and UMAP: t-SNE and UMAP are non-
linear methods better suited for complex data. t-
SNE minimizes the Kullback–Leibler divergence
between the probability distributions of point-
pairs in the high-dimensional and low-dimensional
spaces, aiming to preserve local structure. UMAP,
on the other hand, constructs a fuzzy topological
representation in high-dimensional space and at-
tempts to optimize a lower-dimensional equivalent.

Grand Tour: It enables dynamic exploration by
continuously rotating data, creating interpolations
between random linear projections. To enable dy-
namic exploration, we apply continuous rotations
to the data and interpolate between different ran-
dom projections. Let X ∈ Rn×d represent the data
matrix, where n is the number of data points and
d is the dimensionality, Rt ∈ Rd×d represent a ro-
tation matrix at time t, and P1,P2 ∈ Rd×k repre-
sent two random linear projection matrices, where
k < d. To achieve continuous rotation and interpo-
lation, we rotate the data using Rt and interpolate
between projections P1 and P2 using an interpola-
tion parameter α ∈ [0, 1]:

Xt,α = XRt ((1− α)P1 + αP2)

Projection Pursuit Tour: We also explored an
innovative approach to implement a projection pur-
suit tour by using KNN accuracy as the guid-
ing criterion. We trained KNN classifiers on low-
dimensional data projected from randomly selected
angles, identifying the projection angle with the
highest KNN accuracy and rotating around this
direction to explore nearby projections. While
this approach aimed to identify directions with im-
proved clustering, it ultimately did not yield sig-
nificant visual improvements. Thus, we excluded
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it from the final tool, opting instead to retain only
the Grand Tour to provide users with maximum
flexibility for exploratory visualization.

3.2 Overall Framework

As illustrated in Figure 1, the tool’s workflow con-
sists of three main stages:

1. Embedding Extraction: The tool allows
users to input embeddings generated by models
at different layers of processing. For this project,
we utilize the CLIP and DINO models, focus-
ing on embeddings generated from purely image-
based datasets (CIFAR-10 [6] and CelebA [8]).
Users can choose embeddings either from the fi-
nal output layer or from intermediate layers, fa-
cilitating a deeper exploration into the model’s
representational structure.

2. Projection Pursuit: Once embeddings are ob-
tained, we apply projection pursuit techniques
to map them into a 3D space for easier visualiza-
tion. Supported methods include PCA, t-SNE,
UMAP, and Grand Tour. Each method provides
unique insights into the structure and separabil-
ity of the embeddings, helping to ”open the black
box” of how models like CLIP and DINO encode
image data.

3. Interactive Exploration: In the 3D visual-
ization space, each point represents an individ-
ual image from the dataset. Users can inter-
act with these points, and upon selection, the
tool displays the original image corresponding
to the embedding. This interactive functional-
ity enables users to explore and understand the
relationships between images as learned by the
model, bridging the gap between abstract em-
bedding vectors and their visual representations.

This framework provides a systematic approach for
inspecting how different models and their layers
represent visual data, facilitating a more intuitive
understanding of deep learning embeddings.

4 Experiments

4.1 Experiment setups

4.1.1 User Interface

The front end of our tool is developed using Dash
and Plotly [5], providing a responsive web-based
platform for exploring high-dimensional embed-
dings. As shown in Figure 2, users can select the
dataset (e.g., CIFAR-10 or CelebA) and the embed-
ding model (e.g., CLIP, DINOv2). A layer slider
allows navigation across different network blocks
(e.g., from Block 1 to Final Layer), enabling users

to examine how embeddings evolve through the net-
work layers.

The main visualization area features a 3D UMAP
projection as the default view, along with options
to switch between PCA, t-SNE, and Grand Tour
projections. These plots are dynamically updated
based on user selections, allowing for real-time com-
parisons of different dimensionality reduction tech-
niques.

Our embedding files, organized by dataset, model
and layer, are dynamically loaded based on user
selections. The back end processes the selected
embeddings using PCA, t-SNE, UMAP, or Grand
Tour. Each method is implemented to balance ef-
ficiency with quality of projection, leveraging pre-
computed embeddings for faster load times.

Figure 2: User Interface 1

4.1.2 Data Processing Pipeline

Images are processed through pre-trained Vision
Transformer models for both CLIP (ViT-B/32)
and DINOv2 (ViT-S/14). Before being fed into
the models, images undergo a series of preprocess-
ing steps to ensure compatibility with the model
input size, as both models require images of a
specific dimension, typically 224x224 pixels. For
datasets with varying image sizes, images are first
resized and center-cropped to maintain consistency.
Specifically, each image is resized to 256x256 pix-
els, then center-cropped to 224x224 pixels. This
approach preserves the central part of the image
while adjusting it to the required input dimensions.

In each model, hooks are registered on every Trans-
former block within the visual encoder to capture
intermediate [CLS] token embeddings, allowing us
to observe the evolution of features across layers.
The final layer embedding, which represents the
complete image encoding, is also captured. All em-
beddings are organized by layer and dataset and
saved as .npy files, providing a hierarchical view of
feature abstraction across network depths for both
CLIP and DINOv2.

1For a larger picture of the user interface, please refer to
the appendix A1.
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Figure 1: Workflow

4.1.3 Metrics for Evaluation

As noted earlier, we evaluated the quality of embed-
dings using two primary metrics: Silhouette Score
from K-Means clustering on the unlabeled CelebA
dataset and KNN accuracy on the labeled CIFAR-
10 dataset. These metrics were computed for each
projection method (PCA, t-SNE, UMAP) across
multiple network layers (blocks) of both the CLIP
and DINOv2 models on the CIFAR-10 and CelebA
datasets. We excluded the Grand Tour method be-
cause it’s designed for interactive exploration rather
than providing the fixed, reproducible projections
needed for quantitative embedding evaluation with
our selected metrics. The high-dimensional embed-
dings (High-Dim) serve as a baseline for comparing
the effectiveness of projection methods.

4.2 Results

We report both final and layer-wise results to exam-
ine each layer’s contribution to embedding quality
and model performance. Both the CLIP and DI-
NOv2 pretrained models used in this study have
12 Transformer encoder blocks, from which we ex-
tracted embeddings, including the final output.

To obtain optimal metrics, we fine-tune the number
of clusters K to report the highest Silhouette Score
for each projection method across embedding mod-
els and datasets, and similarly adjust the number
of nearest neighbors K to report the highest KNN
accuracy.

4.2.1 Results of K-Means Silhouette Score
on the CelebA Dataset

Table 2 and Figure 3 4 shows the results of
K-Means Silhouette Score on the CelebA Dataset.
The Silhouette Scores on high-dimensional embed-
dings from both CLIP and DINOv2 are lower than
those on low-dimensional embeddings due to the
curse of dimensionality [2]. As the number of
dimensions increases, Euclidean distance becomes
less effective at measuring similarity between data

points. After projection, these scores increase sig-
nificantly, indicating that the projections success-
fully alleviate this issue and reveal the underlying
cluster structure. A higher Silhouette Score indi-
cates better-defined clusters, as discussed in the fol-
lowing sections.

4.2.2 Results of KNN accuracy on the
CIFAR-10 Dataset

Table 1 and Figure 5 shows the results of K-Means
Silhouette Score on the CelebA Dataset. While Eu-
clidean distance is used in the KNN algorithm, the
KNN accuracy on high-dimensional embeddings re-
mains consistently higher than on their 3D projec-
tions. This is because KNN focuses on local struc-
ture, which tends to be preserved even in high-
dimensional space [4].

After projection onto 3D space, the KNN accuracy
drops, reflecting a loss of information in local re-
lationships. A projected KNN accuracy closer to
that in the original high-dimensional space indi-
cates better class separation within the data.

High-Dim PCA t-SNE UMAP

DINOv2 0.7153 0.3392 0.5625 0.6022
CLIP 0.6566 0.3044 0.5400 0.5429

Table 1: KNN classifier accuracy on the CIFAR-
10 dataset for both high-dimensional and projected
embeddings of the final output.

High-Dim PCA t-SNE UMAP

DINOv2 0.0951 0.3394 0.3330 0.3939
CLIP 0.0489 0.394 0.3729 0.4706

Table 2: Silhouette Scores of K-Means clusters on
the CelebA dataset for both high-dimensional and
projected embeddings of the final output.
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Figure 3: Silhouette Score of K-Means clusters
on both high-dimensional and projected embed-
dings across various blocks of the CLIP model
on the CelebA dataset.

Figure 4: Silhouette Score of K-Means clusters
on both high-dimensional and projected embed-
dings across various blocks of the DINOv2 model
on the human face dataset.

Figure 5: KNN accuracy on both high-
dimensional and projected embeddings across
various blocks of the DINOv2 model on the
CIFAR-10 dataset.

5 Discussion

5.1 Findings

5.1.1 Model Evaluation

We provided identical image inputs to both mod-
els, enabling a direct comparison of their ability to
generate meaningful embeddings from visual infor-
mation alone.

Comparison on metrics. As seen in Table 12,
DINOv2 demonstrated superior performance over
CLIP in high-dimensional KNN accuracy, achiev-
ing a score of 0.7153 compared to CLIP’s 0.6566.
It indicates that DINOv2 is particularly effective in
capturing local neighborhood structures within its
high-dimensional embeddings. Given that DINOv2
was designed with self-supervised learning, it has a
natural advantage in generating robust visual fea-
ture representations, which may contribute to its
higher performance when only image data are pro-
vided. CLIP, on the other hand, typically leverages
its contrastive language-image pre-training to build
associations between modalities, yet when limited
to visual input alone, its effectiveness in distin-
guishing fine-grained visual features appears con-
strained compared to DINOv2.

Silhouette scores for K-Means clustering further
underscore the differences between CLIP and DI-
NOv2 in handling label-free image data. In high-
dimensional space, DINOv2 achieved a silhouette
score of 0.0951, notably higher than CLIP’s 0.0489,
indicating that DINOv2’s embeddings form more
cohesive clusters even without labeled supervision.
This aligns with DINOv2’s architectural empha-
sis on self-distillation, allowing it to capture in-
trinsic data patterns and form coherent groupings
based on visual features alone. Conversely, CLIP’s
contrastive learning approach, optimized for multi-
modal input, results in less-defined clustering with
visual-only data, highlighting a potential limitation
in its adaptability to single-modality scenarios.

Layer-wise Comparison. In Figure 3, we observe
that the high-dimensional Silhouette Score peaks
around block 5, indicating that CLIP’s mid-layers
capture well-separated facial features, likely due to
its multi-modal training objective that aligns vi-
sual and textual features. However, this clustering
quality declines in deeper layers, suggesting that
CLIP’s later stages prioritize semantic abstraction
over precise cluster separability, possibly focusing
more on aligning images with general concepts than
distinguishing individual identities. Among the
projections, t-SNE and UMAP outperform PCA,
with t-SNE performing best in the mid-layers, high-
lighting that non-linear projections better preserve
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complex facial distinctions in lower dimensions for
CLIP embeddings.

In contrast, Figure 3 and Figure 4 illustrate that
DINOv2 maintains or improves Silhouette Score
and KNN accuracy across layers, aligning with
its self-supervised goal of hierarchical, coherent
feature representation. Unlike CLIP, DINOv2’s
later layers retain strong clustering and classifica-
tion performance, suggesting its training encour-
ages intrinsic data structures, progressively refining
class-specific details. UMAP scores improve sig-
nificantly in DINOv2’s deeper layers, particularly
on CIFAR-10, where KNN accuracy peaks around
block 10. This highlights DINOv2’s capacity to
capture well-defined class structures that remain
informative for clustering and classification, even
in low-dimensional projections.

5.1.2 Clustering Analysis

Distribution patterns. Our analysis shows that
both CLIP and DINOv2 models generally perform
well in separating images of different labels and cat-
egories within their generated image embeddings.
For instance, in the CIFAR-10 dataset, not only
were images with distinct labels separated into
their own clusters, but conceptually similar cat-
egories—such as ship, automobile, and truck, all
representing forms of transportation—were placed
adjacent to each other in the visualization. And
the animal classes clustered separately in another
region.

A similar pattern emerged in the unlabeled face
dataset, where different face categories naturally
formed clusters. Notably, male and female images
created two large and distinct clusters, showing
the model’s ability to capture significant categor-
ical differences.

These findings suggest that the models capture
broad patterns well. However, in the CIFAR-10
dataset, we observed some degree of overlap be-
tween images of different labels. One interpretation
of this overlap is that certain classes in CIFAR-10
are inherently more similar to each other—such as
”horse” and ”deer,” or ”automobile” and ”truck.”
This similarity, compounded by the lower resolu-
tion and limited detail of CIFAR-10 images, poten-
tially increases ambiguity and makes these classes
harder to distinguish, resulting in greater overlap
in their representations.

Figure 6: CIFAR10 dataset categorized clusters

Biases detection. In our experiments with unla-
beled datasets, we observed that although images of
male and female faces were generally well separated
into two distinct clusters, there was a small sub-
cluster within the male cluster consisting of images
of female athletes. This indicates that the model
may lack the capability to accurately recognize the
characteristics of female athletes, instead catego-
rizing them broadly as male due to their athletic
attire.

This observation suggests a potential limitation
in the model’s ability to distinguish certain vi-
sual features, possibly associating sportswear more
strongly with male characteristics. Given that this
issue was present in both CLIP and DINO models,
we infer that the phenomenon may be related to the
training dataset rather than the architecture of the
models themselves, suggesting an inherent bias in
the pre-trained model used. To further explore this
hypothesis, additional experiments could be con-
ducted to confirm the influence of dataset bias on
the model’s performance.

5.1.3 Visualization Method Evaluation

In our experiments, we applied various dimension
reduction techniques to evaluate their effectiveness
in visualizing high-dimensional embeddings. The
Figure 3, Figure 4, and Figure 5 illustrate the
performance of these methods across different
layers of CLIP and DINOv2, as measured by
K-Means Silhouette Score and KNN Accuracy.

Non-linear Methods (UMAP and t-SNE):
As shown in Figures3 and 4, UMAP and t-SNE
consistently achieved high Silhouette Scores for
projected embeddings, outperforming the linear
method PCA. This indicates that non-linear meth-
ods are more effective in capturing and preserv-
ing cluster structures in the low-dimensional space,
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particularly in complex datasets like CelebA, where
facial features vary widely. Furthermore, Figure5
shows that UMAP and t-SNE achieved higher KNN
accuracy than PCA and Grand Tour, underscoring
their ability to maintain local neighborhood struc-
tures in the projection.

Grand Tour and PCA: Although this method
less effective in cluster separation compared to op-
timized static methods, provided a flexible, contin-
uous view of the data. Grand Tour does not rely
on optimization to create well-defined clusters, re-
sulting in lower KNN accuracy (Figure 5) compared
to UMAP and t-SNE. However, Grand Tour’s dy-
namic projection offers an advantage for interac-
tive data exploration, allowing users to observe the
data from multiple perspectives. This aligns with
related research suggesting that Grand Tour is suit-
able for unfiltered visualization but may fall short
in clustering clarity due to its reliance on random,
non-optimized projections. While PCA provided a
quick, linear approach to visualizing embeddings,
it struggled to capture the complex structures of
datasets such as CelebA, as evidenced by lower Sil-
houette Scores and KNN accuracy in Figure 3, Fig-
ure 4. Its performance confirms the need for non-
linear or dynamic methods when dealing with high-
dimensional data that exhibits non-linear patterns.

6 Conclusion

In conclusion, the Image Embedding Explorer is a
powerful tool for visualizing embeddings from deep
learning models like CLIP and DINOv2, enhanc-
ing interpretability through diverse dimensionality
reduction and projection pursuit methods. Its in-
teractive features offer insights into model behavior,
promoting transparency and deeper understanding.
Future work could refine projection methods by ex-
ploring alternative projection pursuit tours beyond
the KNN accuracy-guided approach.
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A Appendix

Figure A1: User Interface
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